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Abstract- We consider the equilibrium state and phase separation of a stressed elastic cylindrical
bar which is composed of a mixture of two materials of fixed amounts. The Young's modulus of
the mixture is a function of the local volume fraction, which itself depends on the position in the
bar. We determine the distribution of the two pure components and the field of internal strain
throughout the bar so that the total potential energy is minimized. The problem is one of nonconvex
minimization, and because of this we find that the two materials which comprise the bar are
separated in the stressed equilibrium state. Copyright © 1996 Elsevier Science Ltd.

l. INTRODUCTION

When a body which is composed of many components is stressed, there is potential for
diffusion of one component through the other and separation may take place. For example,
the moisture content of concrete, bricks, and other masonry materials is affected by the
state of stress in the material and this fact is an important element in the list of criteria for
design. Degradation and failure are issues of great concern not only to the structural
designer but also to the machine designer and to the metallurgist who designs alloys. The
separation of materials can aggravate these matters, and so, in many cases, stabilizers, non­
wetting agents, etc., are included in the mixture. On the other hand, in many problems of
optimal design the idea is to put together a certain set of objects in such a way that a given
design feature is optimized. This may require the objects to be homogenized into one
mixture or it may require that they preserve their distinctness, but be "well-placed". There
are examples at both ends of the spectrum, and in many cases it is not an easy problem to
solve.

In the present work, we consider a binary mixture of two elastic materials, each having
known properties in the pure state, in a body of fixed total concentration. The fundamental
question which we address is how the materials should be arranged so that the total
potential energy is minimized. If one thinks of this as a bi-component mixture, perhaps a
metal alloy or a concrete with a variable moisture content, which is subjected to an
equilibrium loading system, then we wish to determine the internal fields of strain and
concentration so that the total potential energy is minimized. In this case, we are interested
to know whether or not the component materials will be segregated in the optimal minimum
energy state. We are not considering the process of diffusion in this work and the related
interesting question of how the material components move in time in relation to the
changing internal deformation field under a fixed loading system. In fact, it is not presently
known whether the diffusion process in this case would evolve towards some other weakly
stable state of equilibrium.

The minimization problem of this work is nonconvex even though at any fixed con­
centration the strain-energy function is quadratic so that the stress-strain behavior is linear.
The elasticity of the material (as well as the mass density) is assumed to depend on the
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volumetric concentration c, which is confined to the interval [0, I]. As the concentration
changes, the material becomes more or less stiff and as a result of this the strain-energy­
concentration graph is not convex.

In Section 2, we introduce the problem of an elastic bar composed of a binary mixture
which is given an axial displacement and subject to an axial body force field. When the
body force is non-zero, there is a bias on the loading system which gives rise to a helpful
uniqueness property. The nonconvex nature of the problem is identified and preliminary
matters are discussed.

In Section 3, we give a brief review of the analysis in the elementary case when the
body force field vanishes. There is a high degree of nonuniqueness in the structure of a
minimizer in this case, but all of the structures can be characterized easily, and we find that
they associate with boundary points at c = 0 or c = I of the strain-energy-concentration
function. Then in Section 4 we consider the main case when the body force does not vanish.
Here, the problem is somewhat harder to solve. The presence of a body force field induces
a regularity and uniqueness on the solution which predicts that the component materials
become segregated into at least two and at most three intervals of concentration c equal to
either 0 or I. In these intervals the stress and strain fields are smooth and not constant. A
main feature of the solution is that the stiffer of the two materials (i.e., the material with
the larger modulus of elasticity in its pure state) becomes located in that interval of the bar
where the absolute value of the stress is the smallest.

In Section 5, we give a graphical representation of the minimizing state in the bar as a
function of the axial end displacement for a fixed body force and fixed total concentration.
We show that in the state of minimum potential energy the materials are separated into
intervals and we illustrate how the stress varies in each interval.

2. PRELIMINARIES: STATEMENT OF THE PROBLEM

Let B = (0, L) denote the undistorted natural reference configuration of a bar of length
L and uniform cross sectional area A. The particles of the bar are distinguished only by the
cross section in which they lie and we shall denote each cross section by x E B c IR. The bar
is supposed to consist of an axially distributed mixture of two elastic materials, components
"0" and" I", and we let c(x) E[O, I] denote the specific volume fraction of component" I"
per unit volume of B at the cross section x. Thus,

VI = Arc(x)dx, Vo = AL- VI, (2.1 )

represent the total volumes of the two materials in B. We shall let Po and PI denote the mass
density of the two pure components which are contained in B, so that the mass density of
a mixture whose specific volume fraction is c is given by :

(2.2)

Therefore, at any cross section x E B, the mixture mass density is given by p(c(x».
Bya deformation of B we mean a continuous I-I mapping yO: B -> IR with y'O > O.

The associated displacement field u(') : B -> IR is then given by

u(x) = y(x) - x (2.3)

for all x E B, and the corresponding strain field is eO = u'0 > - 1.
The bar B is considered to be an elastic solid for which the specific strain energy per

unit reference volume has the classical quadratic form
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Fig. I. Form of the specific stored energy function.

Here, however, we assume that the modulus of elasticity for the mixture, E = E(e), is a
smooth, positive, monotone increasing function of the volume fraction, and that

£'(e) > 0, (In (In £(e)))" < 0 (2.4)

for all eE [0, 1]. We shall let Eo = £(0) and E I = E(1) > Eo be the moduli of elasticity for
the respective pure components; component" 1" is thus the "stiffer" of the two materials.
In this case, if (2.4) holds, the strain energy function

W = Wee, e) = ~E(e)e2 (2.5)

is nonconvex and of the form illustrated in Fig. 1. For convenience we assume that Wee, e)
is defined in (2.5) for all eE IR even though physical considerations require that the strain e

be bounded below by - 1. Thus, the domain of definition of W(·,.) is [0, 1] x IR.
Concerning the imposed actions, the end of B at x = 0 is fixed, while the end x = L is

given a prescribed displacement .1. In addition, gravity is supposed to act on the bar in the
increasing axial direction. We are interested in determining the deformation of the bar and
the distribution of the two components in B, i.e., the specific volume fraction e(x) for x E B,
so that the total potential energy is minimized. The total volume VI of component" 1" is
given, and thus by (2.1 h so also is Vo, the total volume of component "0". If we let 9
denote the standard gravitational constant, since the cross sectional area of B is uniform,
then the total potential energy is given by

E(e, u) = J: [W(e(x), u'(x)) -gp(e(x))u(x)] dx,

where We·) has the form (2.5) and pO is defined in (2.2). The problem then is to

minimize E(e, u)(eO, u(·)) E ,<::1,

where the class of admissible functions sf is given by

(2.6)

(2.7)
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d = {C(')EP'(B), U(')E WI.2(B)1 c(x)E[O,I]VxEB,

f
L

a c(x)dx = Q == Vt/A ~ L, U(O) = 0, u(L) = L1}- (2.8)

This problem is a nonconvex minimization problem because of the form of WC·). More­
over, we emphasize that W(c, e) is defined only for C in the closed interval [0, I], and so the
edges of WC·) at C = 0 and C = 1, as illustrated in Fig. I, are expected to play an important
part in the following analysis.

3. THE ELEMENTARY CASE: ABSENCE OF BODY FORCE

In this section, we consider for completeness the case in which the body force is
negligible, which mathematically is equivalent to setting 9 = 0 in (2.6). Then (2.6) reduces to

E(c, u) = f W(c(x), u/(x)) dx. (3.1)

The results here are not new and are contained in the work of Dunn and Fosdick (1980),
for example. It is well known from the Weierstrass condition,t that if (c('), u(·)) E d is a
minimizer of E(c, u), then at any point XEB of smoothness of cO and uO,

W(c(x),u'(x)) ~ aW(cj,ej)+(1-IX)W(c2,e2),

for all a E (0, I) and all (cj, el ) and (c2, e2) in the domain of definition of We-) such that

In words, the range of a minimizer may include only those points in the domain of definition
of We·) that correspond to lower support points of the surface W = W(c, e). Because of
the nonconvex form of WC·), as illustrated in Fig. I, this implies that (cO, u(·)) can take
values only on the two boundaries of the domain of definition of WC·), i.e., {(c, e)1 c = 0
and e E IR or c = I and e E IR }.

Now suppose that W#e·) is the lower convex envelope of WC·). Then, for L1 =t- 0,
the tangent plane to W# C·) at the point

P== (t, ~, W#(t, ~))

will support the surface We·) from below at two unique points PI == (1, ej, W(1, ej)) and
Po == (0, eo, W(O, eo)) as shown in Fig. 2.

A

: W(c,e)

e

Fig. 2. Tangent plane to the lower convex envelope of W(·,·) and the support points Po and PI'

t See, for example, Dunn and Fosdick (1980), Theorem 1.
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Clearly, the three points PI, P, Po all lie on the same straight line and so we may write

for some AE [0, I]. In fact, this implies that

" Q I1/L-eo
/:---
. - L - e

1
-eo'

and

(3.2)

(3.3)

We shall now show that a minimizer (cU, a(·)) of E(c, u) in s¥ may be constructed of
the form

(3.4)

where the Lebesgue measure of the set B 1 c B is given by

(3.5)

The claim of (3.5) is straightforward because au E ,r;{ must satisfy a(O) = °and a(L) = 11,
Therefore,

and this, along with (3.2), implies (3.5).
To see that (3.4) is the basic structure of a minimizer, we observe, using (3.3) and

(3.5), that

r
L

W(c(x),a'(x))dx = f w(o,eu)dx+f W(I,e1)dx
Jo B'B I B I

= W(0,eo)(L-,u(B 1» + W(1,el),u(B 1) (3.6)

= L[AW(1,ed+(1-).)W(O,eo)]

But the lower convex envelope W# C·) is convex and has the property that

# # (Q 11) ( Q) # (Q 11) ( 11) # (Q 11)W (c,e) ~ W L' L + c- L We L' L + e- L We L' L' (3.7)

for all (c, e) E [0, I] x IR, where w.~ (-,.) and w.~ (-..) denote the respective partial derivatives
of W# C'). Thus if we introduce an arbitrary pair of functions (c, u) E ,r;{, replace (c, e) in
(3.7) by (c(x), u'(x)) and integrate, it then follows that
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rL
#' # (Q A)Jo W (c(x),u (x))dx ~ LW L' L'

f (C(X)- f)dX = 0, f (U'(X)- ~)dX = 0,

(3.8)

for all (C(-),U(-))E d.
Finally, because W# C·) is the lower convex envelope of We·), we note from (3.6)

and (3.8) that

f W# (c(x), z1'(x)) dx ~ f W# (c(x), u'(x)) dx ~ f W(c(x), u'(x)) dx

for all (c(·), u(-)) Ed. Since it is straightforward to construct a pair of functions (c(-),
u(-)) Ed from the basic form of (3.4), (3.5) and (3.2), we conclude that (c(-), u(-)) Ed is
a minimizer for the elementary case in which the body force is negligible. Of course, a
minimizer is not unique because rearrangements of the field constructed above are allowed,
as long as the measure J1(B t ) in (3.5) is fixed at the value }.L.

4. THE MAIN CASE: PRESENCE OF BODY FORCE

We now turn to the general minimization problem of this work, defined in (2.6), (2.7)
and (2.8). Here, it is helpful to first consider the associated relaxed problem which is defined
by replacing the stored energy function W(·;) appearing in (2.6) by its lower convex
envelope W# (- ;). With the aid of (2.4) and (2.5), this lower convex envelope is easily
constructed and has the form

(4.1)

where

(4.2)

We notice that E# (c) is the weighted harmonic mean of the elastic moduli Eo = E(O) and
E 1 = E(l) > Eo. Then, the relaxed problem may be stated as follows:

where

minimize £# (c, u)

(c(o), u(o)) Ed'

£# (c, u) = f [W# (c(x), u'(x)) -gp(c(x))u(x)] dx.

(4.3)

(4.4)

The class sf is defined in (2.8), and the form of 15(-) is given in (2.2).
We shall now construct the uniquet minimizer (c(-), u(-)) E sf for this relaxed problem

and show that it has the additional important property that

t Here, we mean unique in the sense of almost everywhere (a.e.) in B. That is, modulo adjustments on sets of
Lebesgue measure zero.
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(4.5)

That is, we shall show that the field (cO, U(-)) Ed which solves the relaxed minimization
problem not only takes on values that are in the domain of definition of the original
(unrelaxed) problem, but also that the total potential energy of the original problem based
upon this field is the same as the (minimal) total potential energy of the relaxed problem.
Then, because for any (cO, u(-)) E d we know that

E# (c, i1) < E# (c, u) < E(c, u),

the latter inequality arising from the fact that W# (-;) is the lower convex envelope of
Wc-,·), we may conclude that (c(·), a(·)) is a minimizer of the original problem (2.6), (2.7),
(2.8). In fact, (cO, ao) is the unique minimizer of the original problem because if such is
not the case, then there must be another pair (c('), a(-)) E d for which E(c, a) = E(c, a).
But then, c(x) is either 0 or 1 almost everywhere in B because, as a consequence of the
Weierstrass condition, only the lower support points for W(-,·) can be in the range of a
minimizer almost everywhere in B. In this case, (cO, a(·)) is in the domain of definition of
the relaxed problem and, therefore, we see that E(c, a) = E# (c, a), which, in turn, using
(4.5), gives E#(c,a) = E#(c, a). Because (cO,a(·)) is the unique minimizer of the relaxed
problem, we conclude that (cO, a(·)) = (cO, a(·)) modulo a trivial adjustment in B on sets
of Lebesgue measure zero.

First let us consider briefly some general features of the relaxed problem (4.1 )-(4.4)
which lead to the conclusion that a minimizer does indeed exist. To do this, it is convenient
to introduce

cp(x) = fc(s) ds, (4.6)

and to use (2.2) to integrate the second term in (4.4) by parts. Because (cO, u(-)) E d, we
find that up to an additive constant the functional E#(-,·) may be replaced by

Thus, the relaxed minimization problem can be carried out, equivalently, on the functional
(4.7) over the class of functions (cpO, u(·)) E (CPoO, uoO) + do, where

and

For every XEB with Q < L, we define the norm of (cp(.), u(-)) in either do or (CPoO,
uoO) + do as II(cp, u)11 = Ilcpll W"~(B) + Ilull W 12 (B) and we suppose the topology r to be associ­
ated with weak* convergence for functions t/JO E W1.OC(B) and the weak convergence for
functions v E WI.2(B). Then, according to a fundamental theorem in the calculus of vari­
ations (see, e.g., Buttazzo (1989)) the infimum of f#(cp,u) over all (cpO, U('))E(CPoO,
uoO) + do attains its minimumt with respect to the topology r. For the sake of continuity,
we shall not digress now, but rather give a brief discussion of this matter in Appendix A.

t We also have shown this using a classical direct approach in the note of Fosdick et al. (1995).
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Wc now return to the construction of the (unique) minimizer of the relaxed problem:
i.e., determine (cO, a(·n E d such that

E# (c, a) = minimum E# (c, u)

(c('), u(·)) E d
(4.9)

where E# (c, u) is defined in (4.4) and d is defined in (2.8). As a first step, we wish to show
that cO can only take on the values 0 or 1 almost everywhere in the body B. In fact,
suppose not and let X oE B be such that c(x) E ]0, 1[ almost everywhere in a neighborhood
JV(xo) of xo. Then, from (4.1), (4.2), (4.4), (2.2) and (2.8) we readily find that the relevant
system of Euler equations may be written as

and

E# (c(xna'(x) +g J: [p,c(s)+Po(l-c(s))]ds = K a.e.xEB, (4.10)1

where K and J are constants. It is clear that (cO, a(·n E d may be adjusted on a set of
Lebesgue measure zero so that (4.10)1 applies everywhere in B without changing (4.9).
Thus, we see that E#(c(xna'(x) is continuous for all xEB, and the second combined with
the first of (4.10) implies that the weak derivative of ao satisfies

Then, using (4.2) we find, after an elementary simplification, that

Thus, if E1PI -# EoPo we see that a'(x) = 0 for almost all XE vV(xo) and this together with
(4.10)1 implies that

J: c(s) ds = const. a.e. XE vV(xo)·

Consequently, we conclude that c(x) = 0 for almost all xEA/'(xo), but this contradicts the
previous hypothesis that c(x) E ]0, 1[ almost everywhere in A'(xo).

For definiteness, in the remainder of this work we shall assume that

(4.11 )

and then, because of the argument given above, we know that c(x) = 0 or I almost
everywhere in B. In fact, there must be at least some interval of B in which c(x) = I almost
everywhere; otherwise c(x) = 0 almost everywhere in B and the integral constraint on cO
in d cannot be satisfied. Let B, denote the set of all maximal open sub-intervals of B for
which c(x) = 0 almost everywhere. Except for points of Lebesgue measure zero in B we
have B = BoUBI' In B" of course, there maybe sets of measure zero on which c(x) E [0, I),
and in Bo there may be sets of measure zero on which c(x)E(O,I]. However, by adjusting
cO on these meaningless sets of Lebesgue measure zero we can assume, without loss of
generality, that B = BoU B lo where Bo and B, are composed of sets of intervals such that
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(4.12)

Thus, a minimizer of the relaxed problem (4.9) will satisfy the property (4.5) and so it will
also be a minimizer of the original problem (2.6), (2.7), (2.8).

The Euler equation (4.10h no longer applies since it followed from the assumption
that cO could take on values strictly between 0 and 1almost everywhere in some measurable
sub-part of B. Now, however, due to the argument leading to (4.12), only "one-sided"
variations of cO in d are admissible. Thus, using (4.1), (4.2), (4.4), (2.2), (2.8), and a
standard variational argument, we find that the left hand side of (4.10)2 cannot be less
anywhere in Bo than it is anywhere in B" i.e.,

(4.13)

Our aim is now to determine the unique solution of (4.10)[ and (4.13), in the class d
of (2.8), which respects the condition (4.12) and the inequality (4.11). To do this, it is first
helpful to observe that (4.10)" (4.12) and (4.2) imply

(4.14L

and

(4.14)2

Thus, if x* E B is any point of separation between Bo and B [, we find, by integrating (4.14)[,
that for all x in a neighborhood of x* in Bo,

-(.) __(*) _'(*)( *) gpo ( *)2
U X - U x +uo x x-x - 2E

o
x-x ,

where a~(x*) is the limiting value of u'(x) as x tends to x* from within Bo. With this, the
left hand side of inequality (4.13) readily reduces to

Consequently, after evaluating the right hand side of (4.13) in the limit x ---> x*, and by
using the above expression on the left hand side, together with the fact that E# (c(x))u'(x)
is continuous in B, we see from (4.13) that

for all xEBo in a neighborhood of x*. Because of inequality (4.11), we then find that a
minimizer of the relaxed problem (4.9) must satisfy the monotonicity conditions

(4.15)

In words, if E# (c(x))zt(x) is positive (negative), then the local mutual ordering of Bo and B,
at x* is Bo « B, (B l «Bo) and c(x) changesfrom 0 to 1 (l to 0) as x increases through x*.
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Similar to the above argument, we may use (4.14h to find that

U(x) = u(X*)+U'I(X*)(X-x*)- ~~: (X-X*)2

for all XE B] in a neighborhood of x*, where U'I (x*) is the limiting value of a'(x) as x tends
to x* from within B I' Then, by using this expression in the right hand side of (4.13) and
evaluating the left hand side in the limit x ---> x*, we find that

for all x E B [ in a neighborhood of x*. Since we know that E# (c(x))u' (x) is continuous in
B, so that Eou~(x*) = Ela~ (x*), we again recover the monotonicity condition (4.15) from
this inequality. However, in addition, we see that Eou~(x*) = E]u'[ (x*) =1= 0 at any point
x* E B ofseparation between Bo and B [.

In general, these last considerations show that a minimizer of the relaxed problem (4.9)
can have at most two points in B where Bo is separated from B I' For example, suppose that
xEBo, so that c(x) = 0 and that Eou'(x) is strictly positive. According to (4.14)], Eoa'(x)
must be a decreasing function of x and because of (4.15) the domain Bomust then persist
clear back to x = O. As x increases, however, there may be a point x* at which Bo and B 1
are separated. As this point is passed, c(x) must change from 0 to 1, according to (4.15),
Eou'(-) must be positive, and Eou'(-) must change continuously to E1u'(·). As x continues
to increase, now in B[, we see from (4.14h that E[u'(x) must decrease. There mayor may
not be another point x** at which Bo and B I are again separated. If there is, then as this
point is passed, c(x) must change back from I to 0 and, according to (4. I5)z, E1u'(-) must
change continuously to Eou'(-), which now must be negative. As x continues to increase
(now in Bo), we see from (4.14)1 that Eou'(x) must decrease, and because of (4.15) there
can be no further points in B which separate Bo and B I' A trace of this type of minimizer
for the relaxed problem (4.9) is indicated on the graph of the stored density energy function
Wc,·) in Fig. 3. Notice that the minimizer associates with points only on the edges c = 0
and c = 1 of the stored energy function. Thus, the property (4.5) is indeed satisfied
and consequently the minimizer will also serve to minimize the original problem (2.6),
(2.7), (2.8).

In all cases, the set B 1 c B where c(x) = 1 must be connected, and must be of length
Q ~ L (recall (2.8)). Also, if we define the "stress"

A

W(c,e)

e

/
c

Fig. 3. Trace of a minimizer for which Bo and B 1 are separated by two points. Arrows indicate
increasing values of XE B.
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{
EOU'(X) xEBo

-() E# (-( )) -'( ) ,(JX= cxuX=
E\u'(x) XEB 1,

(4.16)

the above argument shows that d(x) can vanish only if x E B 1• Ofcourse, d(x) is a continuous
function, and because of (4.14) it is piecewise affine and decreasing in B = BoU B\. Note
that the function

(4.17)

also is continuous in B and that from (4.14) and (4.16) we find

E p -E p
G-'( ) = _ I I 0 0 -()

X EoE
1

g(1 X .

Thus, we see that GO is piecewise parabolic, and with the aid of (4.11) we observe that
GO is decreasing (increasing) whenever d(x) is positive (negative). Finally, from (4.13), note
that

G(x) IXEBo ? G(x) IXEB
"

(4.18)

In particular, in the case that the given data Q and ~ in d are such that Bo is separated
from B 1 at two points, the functions d(x) and GO will be of a form as illustrated in Figs 4
and 5, respectively. In these figures, the point Xo at which d(xo) = °is located midway
between the two points x* and x** that separate Bo and B j • Fundamentally, this fact
follows from the inequality (4.18) and the piecewise parabolic nature of GO. Of course, x*
and x** must be such that Ix** -x*1 = Q. Finally, the value of d(x) at x = 0, which
corresponds to the constant Kin (4.10), must be determined so that

Bo = (O,x*)U (x**,L)

B - (x* x**)1- ,

/c(x) =1
~

x

Fig. 4. The stress d'(x) of (4.16) in the case that Bo and B 1 are separated at two points x* and x**.

x
Lx* Xo X**

Bo =(O,X*)U (x**,L )

B 1 = (X~ X**)

Fig. 5. The function G(x) of (4.17) in the case that Bo and B, are separated at two points x* and x**.
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rL
flex) rL

_IJo E# (c(x» dx = Jo U (x) dx = ~. (4.19)

Then, aside from the determination of an additional constant that fixes il(O) = 0, and
modulo the adjustments on sets of Lebesgue measure zero as mentioned earlier, the mini­
mizer (cO, il('» E d is uniquely determined. In the following section, we summarize the
construction of the minimizer (cO, il('» E d as a function of ~.

5. SUMMARY OF THE MINIMIZING FIELD

In describing the character of the minimizer (cO, il(-» E d of the relaxed problem
(4.9) (as well as the original problem (2.6), (2.7), (2.8» as a function of the prescribed end
displacement ~, it is instructive to concentrate on the behavior of the stress a(x) of (4.16).
Starting with large ~ > 0, the arguments that we used to produce Fig. 4 show that as ~ is
decreased, the form of a(x) follows the sequence of seven graphs presented in Fig. 6. In
these graphs, the value of the minimizing concentration field cO in B also is illustrated.
Note that first, in Fig. 6(a), there is only one point x* E (0, L) which separates Bo and Bj,
and B I is adjacent to the end x = L. Then as ~ decreases there appears another such point
x**, and the region B I, of high concentration (where c(x) = 1) moves into the interior of
the bar. As ~ is further decreased, the region Bj, moves toward the end x = O. Then, after
a sufficiently large prescribed compression (~ < 0), the region B 1 of high concentration
remains next to the end x = O.

The number ~I that appears in the captions in Fig. 6 corresponds to the particular
prescribed end displacement ~ for which a(L) = O. To calculate this, we recall from (4.14)
and (4.16) that

(5.1)

where K (see (4.10»)) and C are constants. The condition that a(L) = 0 shows that C = 9P 1L,
and the condition that

rL

c(x)dx = rL

dx = Q
Jo Jx*

yields x* = Q- L. Then, the continuity of flex) at x = x* determines the constant K to be

which corresponds to the total weight of the bar B divided by its cross sectional area A,
and this is the stress in B at x = 0, i.e. fl(O) = K. Finally, the number ~l is determined from
(4.19) to be

~ =9(L-Q)[ Q+ (L_Q)]+9P)Q[1L+ L-Q]
I 2Eo PI Po 2 E

1
Eo' (5.2)

The number ~2 that appears first in Fig. 6(b) corresponds to value of ~ such that if
- ~2 < ~ < L12 then there are two points x* and x** in B which separate Bo and B I • The
region of high concentration, where f(x) = 1, has length Q and is in an interior part of the
bar. This is illustrated in Figs 6(c), (d) and (e). Because in this case we found at the end of
Section 4 that the point Xo E B 1 for which a(xo) = 0 must be located midway between x*
and x**, then at ~ = ~2' when x** = Land x* = L - Q, we must have Xo = L - Q/2. This
implies that C = 9PI (L - Q/2) in (5.1h. Then, the continuity of a(x) at x = x* yields
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(a) I L-x'l= Q, ~> ~I

/c(x)=O
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(e) IX"-x'l= Q, -ilf. 1i<0
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Fig. 6. Summary of the minimizing stress u(x) (see (4.16)) and concentration c(x) in B as a function
of the prescribed end displacement Ii.

K = g[p, Qj2+Po(L-Q)]

in (5.1),. With the use of (4.19), we readily find

and it is clear from (5.2) that ~2 < ~l'

(5.3)
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Elementary calculations similar to those indicated above for AI and A2 show that as
long as AE ( - Az, Az)' there are two points x* and x** in B which separate Boand B [. Also,
we find that for A < - A[ « - A2) the stress is everywhere compressive in the bar, as is
shown in Fig. 6(g).

In conclusion, we considered a bar which is under the influence ofan axial gravitational
field and which is fixed at one end and displaced at the other by a given amount. The bar
is composed of a binary mixture of two solids. We found that in the state of lowest total
potential energy the mixture is uniquely separated and the bar is uniquely distorted. The
stiffer material (i.e., the material having greater modulus of elasticity in its pure form) tends
to migrate to that interval of the bar that supports the smallest absolute values of stress. In
the limit of vanishingly small gravitational field (i.e., 9 -+ 0), the resulting limiting state of
the bar is unique and corresponds to one of the many arrangements of minimizers that
were found in Section 3. Thus, the presence of a gravitational field, no matter how small,
provides a sufficient bias to the minimization problem of Section 3 so that a unique
minimizer can be identified. For example, if9 > 0 and 9 -+ 0 we find that (c(x), u/(x)) limits
to the form given in (3.4), (3.5) and (3.2), where Bo corresponds to the interval (0, L-Q)
if A > 0 and to the interval (Q, L) if A < O.
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APPENDIX A

One of the fundamental theorems in the calculus of variation (see, e.g., Buttazzo (1989), p. 10) states that if
(X, r) is a topological space and F: X -+ ~ is a function which is both r-lower semicontinuous and r-coercive, then
F admits a minimum point on X. Our aim is here to verify that this theorem implies that the relaxed minimization
problem, as defined in (4.7) and (4.8), has a minimizer in (4'00, u~O)+ do with respect to the topology r which
was introduced following (4.8). To see that the functional f# (4', u) of (4.7) is r-lower semicontinuous, it suffices
to observe that the integrand in (4.7) is convex in the variables (rp'(x), u'(x».

We now consider the question of r-coercivity. Clearly, here it is sufficient to show that for all
(rp(')' u(·» E (4'00. uoO) + do the functional (4.7) satisfies

(AI)

for some IX > 0 and f3 E R It is convenient to introduce the substitution variables ~ I = rp' and ~2 = u', and use (4.1)
to write the integrand of (4.7) in the form

where ~ = (~lo ~2)' Then, because of the properties of the set (4'00, uoO) + d u, we know that ~I E [0, I] and
4' E [0, Q], and using (4.2) we find that

f( ") IE 1'2 gMI!' IX, lfJ, ~ ~"2 01:>2 ~ A S2 ,

where M = (Lpo+ (PI- Po)Q)A > 0 is the total mass of the bar B and A is the cross sectional area. Since ~I E [0,1],
it thus follows that

f(x,rp,();::, al~12+b,

for some a> 0 and bE~. Whence, for every (rpO, u(·» E (rpuO, uuO) + do,
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Now, the Poincare inequality implies that

and so we find that

Ilull W"(B) ,;;; C, (liu'IIL'(B) + 1)
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(A2)

for some C, > O. This, together with the definition II (rp, u) Ii = II rp II W'"(B) + Ilull W"(B) and the fact that rpC') E W""'(B)
shows that (A2) implies (AI). Thus the functional E# (rp, u) is ,-coercive. Since we know that E# (rp, u) is
,-lower semicontinuous then, according to the theorem stated above, the infimum of E# (rp, u) over all
(rp('), u(·)) E (rpoO, uoO) + do attains its minimum with respect to the topology,. Recall that this topology is
weak· W"""(B) with respect to the functions rpO and weak WI.2(B) with respect to the functions u(·).


